- GND
- 1168842336
- ORCID
-
0000-0003-3707-8947
- GND
- 1226945805
- SCOPUS
- 56658660600
- Sonstiges
- der Hochschule zugeordnet
- GND
- 1044589124
- SCOPUS
- 8343784100
- Sonstiges
- der Hochschule zugeordnet
Abstract in Deutsch:
Bei der Herstellung von faserverstärkten Kunststoffen (FVK) kommt es in Folge von unzureichender Faserbenetzung oder Verwirbelungen der Fließfronten sowie durch Beschläge der Fasern aufgrund von Feuchtigkeit zu einer prozessbedingten Ausbildung von Poren. Diese stellen eine Ursache der Verminderung der mechanischen Eigenschaften dar. Durch eine Erhöhung des Sicherheitsfaktors kann dieser Nachteil in der Konstruktion berücksichtigt werden. Jedoch sollte der Anspruch vorhanden sein, durch eine Optimierung der Verfahrenstechnik, wie auch der Qualitätssicherung, diesen Faktor zu minimieren. Die Qualitätssicherung ermöglicht erst die Analyse der Fehlstellen in FVK-Bauteilen, um auf dessen Basis die Prozessparameter hinsichtlich verbesserter Qualität zu optimieren. Aufgrund dessen ist es nach dem heutigen Stand der Technik nicht möglich, dass maximale Leichtbaupotential der FVK auszunutzen. Die folgende Arbeit beschäftigt mit der Analyse von Fehlstellen. Dazu werden verschiedene Verfahren der zerstörungsfreien Werkstoffprüfung mittels einer Bewertungsmethodik verglichen. Die Verfahren zur Fehlstellenanalyse werden hinsichtlich ihres Potentiales in einem industriellen Einsatzgebiet ausgewählt. Als elementare Bewertungsgrundlagen werden neben ökonomischen Aspekten der jeweiligen Verfahren auch die Fähigkeiten des Personals, wie auch die Genauigkeit, bewertet. Die Analyse der Proben hinsichtlich deren Porenvolumenanteile bzw. deren Fehlstellenverteilung geschieht mit der Thermographie, der Mikroskopie, dem Impuls-Echo-Verfahren und den Röntgenverfahren. Hinzu kommt der Vergleich der rein theoretischen Berechnung des Porenvolumenanteils mit den experimentell ermittelten Anteilen zur Verifizierung einer Tendenz der unterschiedlichen Berechnungsgrundsätze untereinander. Darüber hinaus werden die mechanischen Eigenschaften der verschiedenen Proben mit den entsprechenden Porenvolumenanteilen in Kontext gesetzt, um dahingehend eine Korrelation zu erstellen. Um Proben mit geeigneten Poren für die Analyse herstellen zu können, wird zu Beginn ein entsprechendes Versuchskonzept erstellt, welches sich vorrangig mit der Bildung von Fehlstellen beschäftigt. Auf Grundlage dessen werden die Proben mittels einer Variation der Injektionsdrücke hergestellt. Die These dahinter ist, dass mit steigenden Injektionsdrücken der Fehlstellengehalt abnimmt und die mechanischen Eigenschaften steigen. Des Weiteren werden bei der Analyse die Lage der Poren in den untersuchten Probenkörper berücksichtigt, um eine Aussage über die Fehlstellenverteilung in Fließrichtung treffen zu können. Die Berechnung des Porenvolumenanteils auf Basis von theoretisch ermittelten Kennwerten des Verbundes zeigt im Vergleich zum praktisch berechneten Fehlstellenanteil, dass diese Art der Berechnung aufgrund der Einfachheit ohne Messaufwand ein empfehlenswertes Verfahren ist. Mit Hilfe dessen können vorab erste Abschätzungen getroffen werden, welche die Qualität von Bauteilen beurteilen. Allerdings ist hierbei zu beachten, dass durch unterschiedliche Prozessparameter die wahren von den theoretischen Porenvolumenanteilen abweichen können. Die Berechnungen der Porenvolumenanteile, auf Basis der gemessenen Verbundkennwerte, zeigen eine vergleichbare Tendenz zu den im CT ermittelten Fehlstellenanteilen auf. Somit bestätigen diese Werte die Theorie, dass mit steigenden Injektionsdrücken der Porenvolumenanteil sinkt. Die unter dem Lichtmikroskop vermessenen Porendurchmesser und die daraus bestimmten Porenvolumenanteile korrelieren nur mit den berechneten Fehlstellenanteilen in dem Sinne, dass die Tendenz der ermittelten Werte untereinander gleich sind. Die Ergebnisse des Impuls-Echo-Verfahrens sind zur Ermittlung der Fehlstellen nicht zuverlässig nutzbar. Indessen stellt die Thermographie einen quantitativen Überblick über die Fehlstellenverteilung innerhalb der Proben dar. Dieses Verfahren ist ebenfalls durch die Erstellung der Kosten-Nutzen-Matrix hinsichtlich der Analysegenauigkeit, der ökonomischen Aspekte und der einfachen Handhabung das zu empfehlende Messverfahren. Allerdings ist festzuhalten, dass das 3D-CT die realitätsnahesten Messergebnisse liefert. Dementgegen stehen die hohe Analysedauer und die Kosten einer Messung bzw. der Anschaffung dieses Messgerätes. Die Nachteile des Computertomographen können mittels der 2D-Analyse von Proben reduziert werden. Dabei werden lediglich vereinzelte computertomographische Aufnahmen unterschiedlicher Probenebenen angefertigt und nicht wie beim 3D-CT zu einem 3 dimensionalem Objekt zusammengesetzt. Der Nachteil der 2D-Methode ist die vergleichsweise hohe Streuung der Ergebnisse aufgrund der lokalen Erfassung der inhomogen verteilten Fehlstellen. Die Zugversuche der Prüfkörper quer zur Faserrichtung zeigen, dass mit steigenden Porenvolumenanteilen der E-Modul steigert wobei zugleich die Bruchspannungen vermindert werden. Des Weiteren bestätigt sich die Annahme bei der Prüfung der Proben quer wie auch längs zur Faserrichtung, dass mit steigenden Faservolumenanteilen die Bruchspannungen verbessern. Bei der Analyse der Zugproben in Faserrichtung ist aus den Werten ein idealer Faservolumenanteil zu erkennen, bei welchem die Bruchspannungen ihren Höchstwert einnehmen. Hinzu kommt, dass sich bei den Proben in Faserrichtung analog zum idealen Faservolumenanteil ein idealer Porenvolumenanteil einstellt.