- GND
- 1108317022
- ORCID
-
0000-0002-9158-4026
- GND
- 172745616
- ORCID
-
0000-0002-1818-4878
- SCOPUS
- 56107606100
- SCOPUS
- 58686545400
- SCOPUS
- 58888586900
- SCOPUS
- 7005223351
- Sonstiges
- der Hochschule zugeordnet
- GND
- 139255710
- ORCID
-
0000-0001-9665-7661
- ResearcherID
- O-3775-2018
- SCOPUS
- 7003682376
- Sonstiges
- der Hochschule zugeordnet
- GND
- 2125187-3
Abstract in Deutsch:
Diese Arbeit befasst sich mit der Optimierung von Aluminium-Gallium-Nitrid/Gallium-Nitrid (AlGaN/GaN) -Ionen-sensitiven-Feldeffekttransistoren (ISFETs), einschließlich der zur Prozessierung notwendigen Materialparameter, so wie die Implementierung dieser optimierten Sensoren zur Detektion von Stichstoffmonoxid (NO), im Speziellen für biologische Anwendungen. Durch den angestrebten Einsatz der Transistoren in Flüssigkeiten werden an die chemische und mechanische Stabilität der Passivierung hohe Anforderungen gestellt. Im Vergleich mit den bekannten 'harten' Passivierungsmaterialien wie Si3N4 oder SiO2 konnte gezeigt werden, dass Polyimid die besten Isolationseigenschaften aufweist. Um Polyimid als Passivierung einzusetzen, musste aber ein neuartiger ECR (Electron Cyclotron Resonance) Plasmaprozess entwickelt werden, der einerseits die AlGaN/GaN-Elemente strukturiert und gleichzeitig den aktiven Sensorbereich schützt. Dabei handelt es sich um das sogenannte zweidimensionale Elektronengas (2DEG), das sich spontan zwischen der AlGaN- und GaN-Schicht ausbildet. Der ECR Plasmaschritt ermöglicht das notwendige anisotrope Ätzen zur Isolierung der ISFETs gegeneinander ohne eine messbare Degeneration des 2DEG. Dieser Prozess hinterlässt eine kontaminationsfreie Oberfläche und somit sofort messbare ISFETs, was vorher benötigte Reinigungsschritte überflüssig macht. Um die Detektion von NO zu erlauben, wurde eine Reihe neuer technologischer Prozesse entwickelt, wie etwa die entsprechende Gate-Funktionalisierung der AlGaN/GaN-ISFETs. Wolframtrioxid und Graphen stellten sich bei der vollständigen Analyse des Sensorverhaltens als die Besten der untersuchten Funktionalisierungen heraus. Beim Nachweis der NO-Sensitivität gegenüber bekannten störenden Substanzen, konnte über die Verringerung der pH-Sensitivität des funktionalisierten Transistors, eine gleichzeitige Messung des pH-Wertes und NO durchgeführt werden. Mit Hilfe von L929-Zellen (Maus-Fibroblasten) wurden darüber hinaus die ersten Tests zur Biokompatibilität des Systems durchgeführt. Um die Genauigkeit für in vitro Zellkulturen oder Gewebe-basierte Experimente zu erhöhen, wurde ein miniaturisiertes AlGaN/GaN-ISFET-Array entwickelt, mit einer Miniaturisierung und einem Pitch von 10 mm x 10 mm bzw. 100 mm x 100 mm. Mit einzelnen Sensoren wie auch den miniaturisierten Arrays kann eine Sensitivität von bis zu 57.0 mV/pH (nahe am theoretischen Nernst'schen Verhalten mit 58.2 mV/pH bei 20 °C) erreicht werden. Die Kombination von miniaturisierten Arrays und der Verringerung der pH-Sensitivität könnte in zukünftigen Arbeiten eine simultane NO- sowie pH-Messung auf einem Chip über einen lokalen Gradienten physiologischer Anwendungen ermöglichen.