- GND
- 127860040X
- ORCID
-
0000-0003-1251-7544
- SCOPUS
- 57219027547
- Sonstiges
- der Hochschule zugeordnet
- GND
- 1024465640
- ORCID
-
0000-0001-8719-4925
- ResearcherID
- H-9349-2012
- SCOPUS
- 16245533300
- Sonstiges
- der Hochschule zugeordnet
- GND
- 1110204825
- ORCID
-
0000-0002-2424-7118
- ResearcherID
- D-2404-2017
- SCOPUS
- 36457094200
- Sonstiges
- der Hochschule zugeordnet
- GND
- 12967477X
- ORCID
-
0000-0001-9837-2408
- ResearcherID
- C-9907-2010
- SCOPUS
- 55134440000
- SCOPUS
- 6603842890
- Sonstiges
- der Hochschule zugeordnet
- GND
- 115688986
- ORCID
-
0000-0002-6307-9831
- ResearcherID
- D-9559-2016
- SCOPUS
- 6701629101
- Sonstiges
- der Hochschule zugeordnet
Abstract in Deutsch:
Eine wichtige Quelle der Energieproduktion sind in Deutschland die Regenerativen Energien. Eine Möglichkeit die produzierte Energie zu nutzen, ist die Umwandlung zu Wasserstoff. Wasserstoff ist ein Energieträger, der sich einfach speichern und transportieren lässt. Durch die Kombination von Wasserstoff mit Sauerstoff in einer Brennstoffzelle können Elektrizität, Wärme und Wasser produziert werden. Derzeit wird Wasserstoff hauptsächlich über klassische Methoden wie Dampfreformierung von Kohlenwasserstoffen (fossile Brennstoffe) oder Wasserelektrolyse und Thermolyse produziert. Neue technische Verfahrensweisen zur Wasserstoffproduktion kombinieren die direkte Sonnenenergie und Wasserelektrolyse in einer einzelnen Photoelektrode, auch bekannt als photoelektrochemische Wasserspaltung. Diese neue Methode ist sehr interessant und beinhaltet viele technische Herausforderungen. In der vorliegenden Arbeit wurden Untersuchungen an p-dotiertem Galliumphosphid (GaP) durchgeführt, um dies photoelektrochemisch zu charakterisieren und die Eigenschaften des Materials zu analysieren. Einige Proben wurden mit einer phosphorreichen Oberfläche präpariert (GaP(100)P), die anderen wiesen eine oxidierte Oberflächenrekonstruktion auf (GaP(100) und GaP(111)). Über zwei wichtige elektrochemische Messmethoden, Linear Sweep Voltammetry (LSV) und Chronoamperometry (CA), wurden die photoelektrochemischen Charakterisierungen des GaP durchgeführt. Die Ergebnisse von GaP(100), GaP(111) und GaP(100)P sind sehr unterschiedlich. Zum Anfang zeigt die GaP(111)-Probe die höchsten Stromdichten, verglichen zu den anderen beiden Proben auf, aber nach einer vierstündigen CA sinkt die Stromdichte und ist relativ ähnlich zu den GaP(100)-Proben. Hingegen weist die GaP(100)-Probe eine höhere Stabilität und die GaP(100)P zeigen die schlechtesten Ergebnisse in Bezug auf Leistung und Stabilität zu den beiden anderen Proben auf. Für die Charakterisierung der Oberflächenmorphologie von GaP wurden Untersuchungen mit Rasterkraftmikroskopie (AFM), Rasterelektronenmikroskopie (REM) und Lichtmikroskopie durchgeführt. Die gewonnenen Erkenntnisse lassen auf eine starke Abhängigkeit von der Art der Oberflächenpräparation, der Rekonstruktion in den verschiedenen Kristallorientierungen und den damit einhergehenden Oberflächenzuständen schließen. Für zukünftige Untersuchungen sollte die Stabilität von GaP optimiert werden. Dies beinhaltet eine Festlegung der Oxidschichtdicke sowie der Phosphorschicht an der Halbleiteroberfläche. Des Weiteren ist es wichtig, unterschiedliche Materialschichten für eine Tandemzelle zu untersuchen, um die photoabsorptions Effizienz zu steigern und somit auch die Effizienz Wasser zu spalten.