Kirchhoff, Jonas:
Generic observability for port-Hamiltonian descriptor systems
In: Mathematics of control, signals, and systems : MCSS, Jg. 36 (2024), Heft 4, S. 831 - 873
2024Artikel/Aufsatz in ZeitschriftOA Hybrid
Technische Universität Ilmenau (1992-) » Fakultät für Mathematik und Naturwissenschaften (1992-) » Institut für Mathematik (1992-) » Heisenberg-Professur Optimization Based Control (2019-)
Titel in Englisch:
Generic observability for port-Hamiltonian descriptor systems
Autor*in:
Kirchhoff, JonasTU
GND
1259980456
ORCID
0000-0001-6451-4500ORCID iD
SCOPUS
57191379300
SCOPUS
58356998500
Sonstiges
der Hochschule zugeordnet
korrespondierende*r Autor*in
Erscheinungsjahr:
2024
Open-Access-Publikationsweg:
OA Hybrid
Scopus ID
PPN:
Sprache des Textes:
Englisch
Schlagwort, Thema:
Controllability ; Differential-algebraic equation ; Genericity ; Port-Hamiltonian system ; Relative-genericity ; Stabilizability
Datenträgertyp:
Online-Ressource
Ressourcentyp:
Text
Lizenztyp:
CC BY 4.0
Access Rights:
Open Access
Peer Reviewed:
Ja
Teil der Statistik:
Ja

Abstract in Englisch:

The present work is a successor of Ilchmann and Kirchhoff (Math Control Signals Syst 33:359–377, 2021. https://doi.org/10.1007/s00498-021-00287-x), Ilchmann and Kirchhoff (Math Control Signals Syst 35:45–76, 2023. https://doi.org/10.1007/s00498-021-00287-x) on (relative) generic controllability of unstructured linear differential-algebraic systems and of Ilchmann et al. (Port-Hamiltonian descriptor systems are generically controllable and stabilizable. Submitted to Mathematics of Control, Signals and Systems, 2023. https://arxiv.org/abs/2302.05156) on (relative) generic controllability of port-Hamiltonian descriptor systems. We extend their results to (relative) genericity of observability. For unstructured differential-algebraic systems, criteria for (relative) generic observability are derived from Ilchmann and Kirchhoff (Math Control Signals Syst 35:45–76, 2023. https://doi.org/10.1007/s00498-021-00287-x) using duality. This is not possible for port-Hamiltonian systems. Hence, we tweak the results of Ilchmann et al. (Port-Hamiltonian descriptor systems are generically controllable and stabilizable. Submitted to Mathematics of Control, Signals and Systems, 2023. https://arxiv.org/abs/2302.05156) and derive similar criteria as for the unstructured case. Additionally, we consider certain rank constraints on the system matrices.