- GND
- 132055252
- ORCID
-
0000-0002-1938-6316
- ResearcherID
- L-9272-2013
- SCOPUS
- 23033605300
- Sonstiges
- der Hochschule zugeordnet
- GND
- 1027427391
- ORCID
-
0000-0002-5074-5284
- SCOPUS
- 13103953000
- Sonstiges
- der Hochschule zugeordnet
Abstract in Deutsch:
Ein adiabatischer Quantencomputer kann quadratische unrestringierte binäre Optimierungsprobleme (QUBO-Probleme) effizient lösen, unter bestimmten Voraussetzungen sogar schneller als herkömmliche Computer. Das Ziel dieser Arbeit ist es herauszufinden, welche Optimierungsprobleme als QUBO-Problem modelliert werden können und in welcher Form dies möglich ist. Es stellt sich heraus, dass beliebige ganzzahlige Optimierungsprobleme als QUBO-Pro- bleme modelliert werden können, sofern geeignete Straffunktionen existieren und alle Variablen beschränkt sind. Für die nötigen Umformungsschritten werden die Voraussetzungen diskutiert. Dies umfasst Binärdarstellungen von beschränkten ganzzahligen Variablen, die Reduzierung des Grades multilinearer binärer Polynome und das Aufnehmen von Nebenbedingungen in die Zielfunktion. Des Weiteren werden für multilineare binäre Gleichungs- und Ungleichungsnebenbedingungen geeignete Straffunktionen aufgestellt und verschiedene Möglichkeiten der Wahl der Straffunktionen diskutiert. Zudem wird analysiert, wie mit Betragsfunktionen in Nebenbedingungen und in Zielfunktionen verfahren werden kann.